Abstract

 In robotics, a design of computational system is an important issue which is enabled to represent the functions of robotics and learning the robotic brain to control motions. AI technologies and such neural network enables to to diagnose the error resulting from the movement of the robot by training it to compare the values ​​given to the network through tables in the form of matrix and the real values ​​of the movement of the robot to give the network output to the correct movement of the robot. This paper provides a design of a neural network system for robotics to control the robot movement through a programming and control interface. The evaluation results show the proposed design describing the transit response analysis of the joint actuator (robot motors) to ensure the stability and synchronous will be done.

Keywords

  • — Predictive Policing
  • Machine Learning
  • Crime Prediction
  • Random Forest
  • Support Vector Machine (SVM)
  • Neural Networks
  • Crime Hotspots
  • Public Safety
  • Law Enforcement
  • Data-Driven Policing.

References

  1. F Rubio, Valero F, Llopis-Albert C. A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems. 2019;16(2). doi:10.1177/1729881419839596
  2. Sima Violeta , Ileana Georgiana Gheorghe , Jonel Subi´c and Dumitru Nancu, Influences of the Industry 4.0 Revolution on the Human Capital Development and Consumer Behavior: A Systematic Review, Sustainability 2020, 12, 4035; doi:10.3390/su12104035
  3. Ahmadzadeh Hossein, Ellips Masehian, Modular robotic systems: Methods and algorithms for abstraction, planning, control, and synchronization, Artificial Intelligence, Volume 223, 2015, Pages 27-64, ISSN 0004-3702, https://doi.org/10.1016/j.artint.2015.02.004.
  4. Ljasenko Spartak, Niels Lohse & Laura Justham , Dynamic vs dedicated automation systems - a study in large structure assembly, Production & Manufacturing Research, 8:1, 35-58, DOI: 10.1080/21693277.2020.1737591
  5. FJG Silva, Soares MR, Ferreira LP, Alves AC, Brito M, Campilho RDSG, Sousa VFC. A Novel Automated System for the Handling of Car Seat Wires on Plastic Over-Injection Molding Machines. Machines. 2021; 9(8):141. https://doi.org/10.3390/machines9080141
  6. N Nordin, Xie SQ, Wünsche B. Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review. J Neuroeng Rehabil. 2014 Sep 12;11:137. doi: 10.1186/1743-0003-11-137. PMID: 25217124; PMCID: PMC4180322.
  7. A Akbari, Haghverd F and Behbahani S, Robotic Home-Based Rehabilitation Systems Design: From a Literature Review to a Conceptual Framework for Community-Based Remote Therapy During COVID-19 Pandemic. Front. Robot. AI 8:612331. doi: 10.3389/frobt.2021.612331
  8. S Hernandez-Mendez, Palacios-Hernandez ER, et al Design and Implementation of Composed Position/Force Controllers for Object Manipulation. Applied Sciences. 2021; 11(21):9827. https://doi.org/10.3390/app11219827
  9. H Engemann, Cönen P, Dawar H, Du S, Kallweit S. A Robot-Assisted Large-Scale Inspection of Wind Turbine Blades in Manufacturing Using an Autonomous Mobile Manipulator. Applied Sciences. 2021; 11(19):9271. https://doi.org/10.3390/app11199271
  10. A Zhang, Koyama K, Wan W, Harada K. Manipulation Planning for Large Objects through Pivoting, Tumbling, and Regrasping. Applied Sciences. 2021; 11(19):9103. https://doi.org/10.3390/app11199103
  11. Arshad A., S. Badshah and P. K. Soori, "Design and fabrication of smart robots," 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), 2016, pp. 1-4, doi: 10.1109/ICEDSA.2016.7818518.
  12. LM Muratori, Lamberg EM, Quinn L, Duff SV. Applying principles of motor learning and control to upper extremity rehabilitation. J Hand Ther. 2013 Apr-Jun;26(2):94-102; quiz 103. doi: 10.1016/j.jht.2012.12.007. PMID: 23598082; PMCID: PMC3773509.
  13. J.M Box-Steffensmeier,., Burgess, J., Corbetta, M. et al. The future of human behaviour research. Nat Hum Behav 6, 15–24 (2022). https://doi.org/10.1038/s41562-021-01275-6
  14. Chen Ching-Han, Chien-Chun Wang, et al, "Fuzzy Logic Controller Design for Intelligent Robots", Mathematical Problems in Engineering, vol. 2017, Article ID 8984713, 12 pages, 2017. https://doi.org/10.1155/2017/8984713
  15. Raguraman S. M., D. Tamilselvi and N. Shivakumar, "Mobile robot navigation using Fuzzy logic controller," 2009 International Conference on Control, Automation, Communication and Energy Conservation, 2009, pp. 1-5.
  16. A Saffiotti,., Ruspini, E.H., Konolige, K, Using Fuzzy Logic for Mobile Robot Control. In: Zimmermann, HJ. (eds) Practical Applications of Fuzzy Technologies. The Handbooks of Fuzzy Sets Series, vol 6. Springer, Boston, MA. 1999, https://doi.org/10.1007/978-1-4615-4601-6_5
  17. Cembrano G, C Torras, G Wells, Neural networks for robot control, Annual Review in Automatic Programming, Volume 19, 1994, Pages 159-166, ISSN 0066-4138, https://doi.org/10.1016/0066-4138(94)90059-0.
  18. Thomas jith and John Hedley, FumeBot: A Deep Convolutional Neural Network Controlled Robot, Robotics 2019, 8, 62; doi:10.3390/robotics8030062
  19. Bozek P, Karavaev YL, Ardentov AA, Yefremov KS. Neural network control of a wheeled mobile robot based on optimal trajectories. International Journal of Advanced Robotic Systems. 2020;17(2). doi:10.1177/1729881420916077
  20. Nguyen H. -T. and C. C. Cheah, "Analytic Deep Neural Network-Based Robot Control," in IEEE/ASME Transactions on Mechatronics, vol. 27, no. 4, pp. 2176-2184, Aug. 2022, doi: 10.1109/TMECH.2022.3175903.
  21. S.G Tzafestas,. (1995). Neural Networks in Robot Control. In: Tzafestas, S.G., Verbruggen, H.B. (eds) Artificial Intelligence in Industrial Decision Making, Control and Automation. Microprocessor-Based and Intelligent Systems Engineering, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0305-3_11
  22. Jiang Yiming, Chenguang Yang, Jing Na, et al, "A Brief Review of Neural Networks Based Learning and Control and Their Applications for Robots", Complexity, vol. 2017, Article ID 1895897, 14 pages, 2017. https://doi.org/10.1155/2017/1895897
  23. H Deng, Xia Z, Weng S, Gan Y, Fang P, Xiong J. A motion sensing-based framework for robotic manipulation. Robotics Biomim. 2016;3(1):23. doi: 10.1186/s40638-016-0056-9. Epub 2016 Dec 9. PMID: 28018838; PMCID: PMC5148786.
  24. K Panayiotou, Tsardoulias E, Zolotas C, et al. A Framework for Rapid Robotic Application Development for Citizen Developers. Software. 2022; 1(1):53-79. https://doi.org/10.3390/software1010004
  25. Masoud Mohammad, Yousef Jaradat, Ahmad Manasrah, Ismael Jannoud, "Sensors of Smart Devices in the Internet of Everything (IoE) Era: Big Opportunities and Massive Doubts", Journal of Sensors, vol. 2019, Article ID 6514520, 26 pages, 2019. https://doi.org/10.1155/2019/6514520
  26. C Dai Y, Xiang, Qu W, Zhang Q. A Review of End-Effector Research Based on Compliance Control. Machines. 2022; 10(2):100. https://doi.org/10.3390/machines10020100
  27. Dilip Golda, Ramakrishna Guttula, Sivaram Rajeyyagari, et al, "Artificial Intelligence-Based Smart Comrade Robot for Elders Healthcare with Strait Rescue System", Journal of Healthcare Engineering, vol. 2022, Article ID 9904870, 12 pages, 2022. https://doi.org/10.1155/2022/9904870
  28. S-M Kim, Choi Y, Suh J. Applications of the Open-Source Hardware Arduino Platform in the Mining Industry: A Review. Applied Sciences. 2020; 10(14):5018. https://doi.org/10.3390/app10145018
  29. Hrishikesh Mr. R. Shirke, Dr. Prof. Mrs. N. R. Kulkarni, Mathematical Modeling, Simulation and Control of Ball and Beam System, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 04, Issue 03 (March 2015), http://dx.doi.org/10.17577/IJERTV4IS030879
  30. M Xiloyannis, Annese E, Canesi M, et al,. Design and Validation of a Modular One-To-Many Actuator for a Soft Wearable Exosuit. Front Neurorobot. 2019 Jun 18;13:39. doi: 10.3389/fnbot.2019.00039. PMID: 31275129; PMCID: PMC6591529.
  31. S N. Paine,. Oh and L. Sentis, "Design and Control Considerations for High-Performance Series Elastic Actuators," in IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 1080-1091, June 2014, doi: 10.1109/TMECH.2013.2270435.
  32. JU Liceaga-Castro, Siller-Alcalá II, González-San Román JD, Alcántara-Ramírez RA. PI Speed Control with Reverse Motion of a Series DC Motor Based on the Noise Reduction Disturbance Observer. Actuators. 2022; 11(5):117. https://doi.org/10.3390/act11050117
  33. Baoming G., L. Jihong and A. T. de Almeida, "Fuzzy neural network control for robot manipulator directly driven by switched reluctance motor," 9th IEEE International Conference on Cognitive Informatics (ICCI'10), 2010, pp. 573-577, doi: 10.1109/COGINF.2010.5599676.
  34. Baoming Ge, and Aníbal T. de Almeida. "Fuzzy Neural Network Control for Robot Manipulator Directly Driven by Switched Reluctance Motor." IJCINI vol.5, no.3 2011: pp.86-98. http://doi.org/10.4018/ijcini.2011070106