Abstract

The dominance of English in artificial intelligence (AI) tools for code generation has created an accessibility gap for non-English-speaking developers worldwide. As global programming communities continue to expand, the need for inclusive and linguistically diverse developer tools becomes increasingly critical. This paper introduces a lightweight, multilingual Natural Language Interface (NLI) framework designed to translate natural language prompts in various languages into executable code. Leveraging state-of-the-art multilingual large language models (LLMs) such as mT5 and mBART, the proposed system is fine-tuned using a novel dataset of parallel programming prompts in English, Spanish, French, Hindi, Yoruba, Arabic, and Mandarin. Both automatic (BLEU, CodeBLEU, execution accuracy) and human-centered (readability, syntactic and logical correctness) evaluations demonstrate that while English inputs yield the highest performance, several other languages show promising results with moderate adaptations.

Additionally, real-world case studies from educational platforms, coding bootcamps, and regional hackathons reveal the practical utility and social impact of deploying such inclusive tools. The findings highlight performance disparities across languages, especially in low-resource linguistic settings, and suggest pathways for improving fairness and accuracy through language-aware tokenization, script normalization, and culturally sensitive prompt engineering. By democratizing access to AI-assisted code generation, this research contributes to bridging the digital divide in software development and fosters a more inclusive global programming ecosystem.

Keywords

  • Multilingual NLP
  • Code Generation
  • Inclusive AI
  • Natural Language Interfaces
  • Large Language Models
  • Programming Accessibility
  • Cross-lingual Computing
  • Developer Tools.

References

  1. 1. Chai, L., Liu, S., Yang, J., Yin, Y., Jin, K., Liu, J., ... & Li, Z. (2024). Mceval: Massively multilingual code evaluation. arXiv preprint arXiv:2406.07436.
  2. 2. Zheng, Q., Xia, X., Zou, X., Dong, Y., Wang, S., Xue, Y., ... & Tang, J. (2023, August). Codegeex: A pre-trained model for code generation with multilingual benchmarking on humaneval-x. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 5673-5684).
  3. 3. Yan, W., Tian, Y., Li, Y., Chen, Q., & Wang, W. (2023). Codetransocean: A comprehensive multilingual benchmark for code translation. arXiv preprint arXiv:2310.04951.
  4. 4. Wang, Y., Le, H., Gotmare, A. D., Bui, N. D., Li, J., & Hoi, S. C. (2023). Codet5+: Open code large language models for code understanding and generation. arXiv preprint arXiv:2305.07922.
  5. 5. Chiruzzo, L., Ritter, A., & Wang, L. (2025, April). Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers).
  6. 6. Li, M., Mishra, A., & Mujumdar, U. (2024). Bridging the Language Gap: Enhancing Multilingual Prompt-Based Code Generation in LLMs via Zero-Shot Cross-Lingual Transfer. arXiv preprint arXiv:2408.09701.
  7. 7. Dandamudi, R., & Rodríguez-Pérez, G. (2024, October). A Preliminary Study of Multilingual Code Language Models for Code Generation Task Using Translated Benchmarks. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering Workshops (pp. 94-99).
  8. 8. Jiang, J., Wang, F., Shen, J., Kim, S., & Kim, S. (2024). A survey on large language models for code generation. arXiv preprint arXiv:2406.00515.
  9. 9. Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., ... & Raffel, C. (2020). mT5: A massively multilingual pre-trained text-to-text transformer. arXiv preprint arXiv:2010.11934.
  10. 10. Chirkova, N., Liang, S., & Nikoulina, V. (2023). Empirical study of pretrained multilingual language models for zero-shot cross-lingual knowledge transfer in generation. arXiv preprint arXiv:2310.09917.
  11. 11. Ni, A., Yin, P., Zhao, Y., Riddell, M., Feng, T., Shen, R., ... & Cohan, A. (2024). L2ceval: Evaluating language-to-code generation capabilities of large language models. Transactions of the Association for Computational Linguistics, 12, 1311-1329.
  12. 12. Navigli, R., & Ponzetto, S. P. (2010, July). BabelNet: Building a very large multilingual semantic network. In Proceedings of the 48th annual meeting of the association for computational linguistics (pp. 216-225).
  13. 13. Qin, L., Chen, Q., Zhou, Y., Chen, Z., Li, Y., Liao, L., ... & Yu, P. S. (2025). A survey of multilingual large language models. Patterns, 6(1).
  14. 14. Bajwa, I. S., Naveed, M. S., & Choudhary, M. A. Natural Language Processing based Automatic Multilingual Code Generation.
  15. 15. Pereira, V., Basilio, M. P., & Santos, C. H. T. S. H. T. (2024). Enhancing decision analysis with a large language model: pydecision a comprehensive library of MCDA methods in python. arXiv preprint arXiv:2404.06370.
  16. 16. Rehm, G., Marheinecke, K., Hegele, S., Piperidis, S., Bontcheva, K., Hajič, J., ... & Yvon, F. (2020). The European language technology landscape in 2020: Language-centric and human-centric AI for cross-cultural communication in multilingual Europe. arXiv preprint arXiv:2003.13833.
  17. 17. Bateman, J. A. (1997). Enabling technology for multilingual natural language generation: the KPML development environment. Natural Language Engineering, 3(1), 15-55.
  18. 18. Babu, C. S., & Akshara, P. M. (2024). Revolutionizing conversational AI: unleashing the power of ChatGPT-Based applications in generative AI and natural language processing. In Advanced applications of generative AI and natural language processing models (pp. 228-248). IGI Global Scientific Publishing.
  19. 19. Hariri, W. (2023). Unlocking the potential of ChatGPT: A comprehensive exploration of its applications, advantages, limitations, and future directions in natural language processing. arXiv preprint arXiv:2304.02017.
  20. 20. Zhao, D. (2025). The impact of AI-enhanced natural language processing tools on writing proficiency: An analysis of language precision, content summarization, and creative writing facilitation. Education and Information Technologies, 30(6), 8055-8086.