Abstract
Next-Generation Hybrid
>> Databases: Bridging SQL Consistency, NoSQL Scalability, and
>> AI-Driven Optimizations
Keywords
- SQL
- NoSQL
- hybrid databases
- polystores
- consistency
- benchmarks
- AI in databases
References
- 1. M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems, 4th ed. Springer, 2019.
- 2. M. Stonebraker and U. Çetintemel, “One Size Fits All: An Idea Whose Time Has Come and Gone,” IEEE Data Eng. Bull., vol. 27, no. 1, pp. 11–17, 2005.
- 3. D. Pritchett, “BASE: An ACID Alternative,” Queue, vol. 6, no. 3, pp. 48–55, 2008.
- 4. J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL Database,” in Proc. 2011 Int’l Conf. Pervasive Computing and Applications, pp. 363–366.
- 5. R. Hecht and S. Jablonski, “NoSQL Evaluation: A Use Case Oriented Survey,” in Proc. Int’l Conf. Cloud and Service Computing, 2011, pp. 336–341.
- 6. M. Fowler and P. J. Sadalage, NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Addison-Wesley, 2012.
- 7. G. DeCandia et al., “Dynamo: Amazon’s Highly Available Key-value Store,” in Proc. SOSP, 2007, pp. 205–220.
- 8. I. Robinson, J. Webber, and E. Eifrem, Graph Databases, 2nd ed. O’Reilly, 2015.
- 9. J. Duggan et al., “The BigDAWG Polystore System,” SIGMOD Record, vol. 44, no. 2, pp. 11–16, 2015.
- 10. P. Bressel, A. Grulich, and K. Böhm, “Polypheny: Fast Prototyping for Polystores,” in Proc. EDBT, 2019.
- 11. I. Bjeladinovic et al., “Polyglot Persistence in Practice: A Case Study in E-Commerce and Healthcare,” J. Syst. Softw., vol. 183, p. 111129, 2022.
- 12. A. Gubichev et al., “UniBench: Benchmarking Multi-Model Database Systems,” in Proc. BTW, 2021.
- 13. R. Gupta et al., “Hybrid Database Systems: A Systematic Literature Review,” J. Big Data, vol. 7, no. 112, pp. 1–19, 2020.
- 14. M. Armbrust et al., “SQL Interface for Data Lakes and Heterogeneous Data Sources: Apache Calcite and Trino,” Proc. VLDB Endow., vol. 14, no. 12, pp. 3135–3147, 2021.
- 15. A. Kumar and B. C. Ooi, “SQL vs NoSQL: Revisiting the Trade-offs,” ACM Comput. Surv., vol. 52, no. 3, pp. 1–23, 2019.
- 16. K. Kaur and R. Rani, “Modeling and Querying Data in NoSQL Databases,” in Proc. IEEE Big Data, 2013, pp. 1–7.
- 17. J. C. Corbett et al., “Spanner: Google’s Globally-Distributed Database,” in Proc. OSDI, 2012, pp. 261–264.
- 18. Microsoft Azure Documentation, “Consistency Levels in Azure Cosmos DB,” 2022. Available: https://learn.microsoft.com
- 19. Debezium Documentation, “Change Data Capture with Debezium,” 2023. Available: https://debezium.io/documentation/
- Microsoft Documentation, “Implementing the Outbox Pattern,” 2023. Available: https://learn.microsoft.com/
- 20. F. Chen, J. Rao, and K. Lakshmanan, “High Performance and Fault Tolerant Middleware for Cloud Databases,” Future Generation Computer Systems, vol. 117, pp. 64–76, 2021.
- 21. B. F. Cooper et al., “Benchmarking Cloud Serving Systems with YCSB,” in Proc. 1st ACM Symposium on Cloud Computing (SoCC), 2010, pp. 143–154.
- 22. S. Ghafari, A. Al-Dubai, and E. Ekonomou, “SQL–NoSQL Hybrid Solutions: A Performance and Scalability Evaluation,” Future Generation Computer Systems, vol. 118, pp. 145–160, 2021.
- 23. Y. Shen and L. Shao, “Hybrid Databases: Integrating SQL and NoSQL for Modern Applications,” Int. J. Computer Applications, vol. 975, pp. 17–25, 2020.
- 24. C. Li and S. Manoharan, “A Performance Comparison of SQL and NoSQL Databases,” in Proc. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), 2013, pp. 15–19.
- 25. J. Yang et al., “NeuroCard: One Cardinality Estimator for All Tables,” in Proc. SIGMOD, 2020, pp. 1099–1114.
- 26. T. Kraska et al., “The Case for Learned Index Structures,” in Proc. SIGMOD, 2018, pp. 489–504.
- 27. A.-A. Mamun, H. Wu, Q. He, J. Wang, and W. G. Aref, “A Survey of Learned Indexes for the Multi-Dimensional Space,” arXiv preprint arXiv:2403.06456, 2024.
- 28. R. Marcus and O. Papaemmanouil, “Bao: Making Learned Query Optimization Practical,” in Proc. SIGMOD, 2021, pp. 1278–1293.
- 29. Z. Hong et al., “Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL,” Proc. VLDB Endow., vol. 17, no. 5, pp. 960–973, 2024.