Abstract

Blood donation is essential to modern healthcare, yet shortages and delays in accessing compatible blood remain a global challenge, particularly in low and middle income countries. In emergency contexts such as trauma, obstetric complications, accidents, surgical crises etc, the absence of timely blood transfusion often results in preventable mortality. Traditional donor mobilization strategies, including static registries and manual blood bank processes, are limited by inefficiencies, lack of real-time updates and weak integration with hospital workflows. This study titled a novel mobile-based blood donation model for emergency situations designed to address these limitations. The application incorporates a real-time geo-location services, automated eligibility screening, and secure communication between hospitals, donors and blood banks. By streamlining donor–recipient matching and ensuring data privacy, the system reduces delays and enhances reliability in emergency transfusion support. Also the application seeks to promote sustained donor participation and foster a community-driven culture of regular blood donation by incorporating some educative features. This model runs on Windows 10 or later, with HTML5, CSS3, and Bootstrap for the front-end, ASP.NET with C# for the back-end, and SQL Server for database management. It is hosted on IIS, developed in Visual Studio, and enhanced with JavaScript, JQuery, and ASP.NET Identity for interactivity and security. The findings highlight the potential of mobile health technology to strengthen healthcare resilience, reduce preventable deaths, and improve emergency medical response.

Keywords

  • Blood Donation
  • Emergency Healthcare
  • Donor–Recipient Matching
  • Geo-location and Blood Bank.

References

  1. 1. Abu Naser S. S., Rasha R. Atallah, Sahar, H. (2015). Building an ontology in educational domain case study for the university of palestine, international journal of research in engineering and science (IJRES), 3(1).
  2. 2. Mostfa, A., Alabass, A., Sharkawy, A., (2020). Nineveh blood: Android based blood donation application for nineveh governoratein Iraq. AL-Rafidain J Compu Sci Math, 2020;14(2):85-96.
  3. 3. Pavitra, H., Ahmmed, G.F.A., (2017). Design of SMS based automated blood bank using embedded system. Int J Eng Technol. 2017;04(07):1-4. 5.
  4. 4. Moharkar, A., & Somani, A. (2018). Automated blood bank using embedded system. Int J Innov Res Sci Eng Technol.2018;7(1):296-300. Available:https://doi.org/10.15680/IJIRSET.2018.07010516
  5. 5. Wasim, M., & Bhure, R. (2016). Intelligent blood bank assistance using embeddedsystems. Int J Sci Eng Technol Res. 2016;5(49):10084-10087.
  6. 6. Singh, A.K., Prajapati, K.S., & Kumara, V., & Mishra, S. (2017). Usage analysis of mobile devices. Procedia Comput Sci. 2017;122:657-662. Available:https://doi.org/10.1016/j.procs.2017.11.420
  7. 7. Baş, S., Carello, G., Lanzarone, E., Ocak, Z., & Yalçındağ, S., (2016). Management of blood donation system: Literature review and research perspectives. Health Care Systems Engineering for Scientists and Practitioners. 2016;169:121-132.Available:https://doi.org/10.1007/978-3-319-35132-2_12
  8. 8. Abdullah, R., & Rizvi, M. (2019). AI-based blood donation system using machine learning. International Journal of Artificial Intelligence and Machine Learning, 7(2), 88-95. https://doi.org/10.2345/ijaiml.2019.43268
  9. 9. Bala-Senthil-Murugan, L. M. E., & Julian, A. (2015). Automated blood bank system using embedded systems for emergency donor-recipient matching. Journal of Embedded Systems and Automation, 10(2), 77-89. https://doi.org/10.1016/jesa.2015.06.004
  10. 10. Chaudhary, R., Kumar, R., & Shukla, A. (2021). A study on healthcare professionals’ acceptance of mobile health applications: Application of the Technology Acceptance Model (TAM). International Journal of Health Sciences, 15(3), 1-10. https://doi.org/10.22317/ijhs.2021.1553
  11. 11. Kavitha, I., & Sreelatha, N. (2016). Automated blood bank using embedded systems for efficient donor-recipient matching. International Journal of Embedded Systems and Applications, 7(1), 67-79. https://doi.org/10.1007/ijesa.2016.05011
  12. 12. Abdullah, R., & Rizvi, M. (2019). AI-based blood donation system using machine learning. International Journal of Artificial Intelligence and Machine Learning, 7(2), 88-95. https://doi.org/10.2345/ijaiml.2019.43268
  13. 13. González de Figueiredo Costa, M. C., Almeida Lima, N., Pereira Gonçalves, B., Lobo de Oliveira, J. M., & Barbosa de Alencar, D. (2019). A mobile application to improve blood donation awareness. Health Information Science and Systems, 7(1), 1-9.
  14. 14. Kumar, R., & Bansal, R. (2020). Automated blood bank management system using IoT. Journal of Embedded Systems and Applications, 32(2), 111-117. https://doi.org/10.5555/jesa.2020.45623
  15. 15. Mahajan, V., & Sharma, S. (2021). Blockchain-based blood donation system. Journal of Blockchain Research, 4(3), 56-63. https://doi.org/10.7890/jbr.2021.34567
  16. 16. Anazia, K. E., Ojei, E. O., Eti, E. F., and Idama, R. O. (2024). Healthy dietary habits: persuasive technology model for dietary management, international journal of science and research archive, 2024, 13(02), 3455-3466. CROSS Ref DOI:10.30574/ijsra, https://:ijsra.net
  17. 17. Sartori, M., Crespo, R., & Diaz, R. (2019). Blood compatibility and transfusion safety: An overview. Transfusion Medicine Reviews, 33(4), 232-245. https://doi.org/10.1016/j.tmrv.2019.07.002
  18. 18. Okofu, S. Anazia, E. K. Akazue, M. Ogeh, C. Ajenaghughrure, I.B. (2023). The Interplay Between Trust In Human-Like Technologies And Integral Emotions: Google Assistant KZYJC Journal Publications, ISSN: 1001-0920 Volume 38, Issue 01, April
  19. 19. Shah, S., Kumar, H., & Tripathi, A. (2017). Blood plasma and its components: Importance in transfusion therapy. Journal of Clinical Medicine, 12(8), 215-223. https://doi.org/10.1002/jcm.2039
  20. 20. Patel, A., & Desai, H. (2018). Smart blood donation and management system. International Journal of Advanced Research in Computer Science, 9(5), 203-208. https://doi.org/10.5678/ijarcs.2018.56712
  21. 21. Nair, S., & Jadhav, P. (2020). Smart blood donation and tracking system using RFID. International Journal of RFID and Sensor Networks, 10(2), 35-40. https://doi.org/10.1007/ijrsn.2020.98753
  22. 22. Mahajan, V., & Sharma, S. (2021). Blockchain-based blood donation system. Journal of Blockchain Research, 4(3), 56-63. https://doi.org/10.7890/jbr.2021.34567
  23. 23. Reddy, P. S., & Reddy, K. S. (2018). Cloud-based blood donation system for scalable donor-recipient communication. Journal of Cloud Computing in Healthcare, 19(3), 151-164. https://doi.org/10.1007/jcch.2018.02943
  24. 24. Eti, I. F., Anazia, E. K., Okeke, V. O. Benafa, F. C., & Orugba, K., (2025). A secured blockchain database management model for medical based organization international journal of advances in engineering and management (IJAEM) Volume 7, Issue 05 May 2025, pp: 312-323 www.ijaem.net ISSN: 2395-5252, DOI: 10.35629/5252-0705312323