Abstract

Abstract— In this paper, a robust method for diagnosing chest illness from chest X-ray images is designed and implemented utilizing deep learning networks. The goals of the suggested system are to ensure that patients receive the appropriate treatment at the appropriate time, enable prompt and accurate diagnosis, and stop a patient's health from declining. We developed a neural network approach that fine-tunes convolutional layers and hyperparameters to categorize chest diseases into 14 groups. Using a U-net model for lung separation and a Res-Net50 for chest diagnosis, our approach can distinguish between 14 categories of chest illnesses and normal patients. The proposed method showed exceptional diagnostic efficiency with a 92.71% classification model accuracy and a 97% segmentation model accuracy across all classes.

Keywords

  • Convolutional Neural Networks
  • Chest Diagnosis
  • U-Net
  • ResNet-50
  • Gamma Correction.

References

  1. 1. Rahman, T.; Chowdhury, M.E.; Khandakar, A.; Islam, K.R.; Islam, K.F.; Mahbub, Z.B.; Kadir, M.A.; Kashem, S. "Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-ray", Appl. Sci. 2020, 10, 3233,2020.
  2. 2. A. Ahmad, A. B. Mansoor, R. Mumtaz, M. Khan, and S. H. Mirza." Image processing and classification in diabetic retinopathy" A review. In 2014 5th European Workshop on Visual Information Processing (EUVIP), pages 1–6, Dec 2014.
  3. 3. Ayan E.; Ünver, H.M. "Diagnosis of pneumonia from chest x-ray images using deep learning". In Proceedings of the Scientific Meeting on Electrical-Electronics Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 24–26 April 2019; Volume 7, pp. 1–5.
  4. 4. Ali A-R, Li J, Yang G, OShea SJ. "A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images". PeerJ Computer Science 6:e268 DOI 10.7717/peerj-cs.268, 2020.
  5. 5. Nguyen, K.P.; Son, T.H,; Le, T.H.; Tuan, L.; Nguyen, T.T." Applying multi-cnns model for detecting abnormal problem on chest x-ray images". In Proceedings of the 10th International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City, Vietnam, pp. 300–305, 2018.
  6. 6. Labhane, G.; Pansare, R.; Maheshwari, S.; Tiwari, R.; Shukla, A. "Detection of Pediatric Pneumonia from Chest X-Ray Images using CNN and Transfer Learning". In Proceedings of the 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), Jaipur, India,; pp. 85–92, 7–8 February 2020.
  7. 7. W. D. Jenkins, A. K. Matthews, A. Bailey, W. E. Zahnd, K. S. Watson, G. Mueller-Luckey, Y. Molina, D. Crumly, and J. Patera, “Rural areas are disproportionately impacted by smoking and lung cancer,” Preventive Medicine Reports, vol. 10, pp. 200 – 203, 2018.
  8. 8. Simonyan, K., & Zisserman, A." Very deep convolutional networks for large-scale image recognition". arXiv preprint arXiv:1409.1556, 2014.
  9. 9. Ishwerlal, Rathod Dharmesh, Reshu Agarwal, and K. S. Sujatha. "Lung disease classification using chest X ray image: An optimal ensemble of classification with hybrid training." Biomedical Signal Processing and Control 91 (2024): 105941.
  10. 10. Dina Hussein, Dina M. Ibrahim, N. M. Elshennawy,"Deep-Pneumonia Framework Using Deep Learning Models Based on Chest X-Ray Images", Diagnostics 10, 649, 2020.
  11. 11. Trivedi, N., Alsadoon, A., Prasad, P.W.C., Abdullah, S., Alrubaie, A.(2021). Enhanced classification loss functions and regularization loss function (ECLFaRLF) algorithm for bowel cancer feature classification. Multimedia Tools and Applications, 80(14), pp. 21561–21578,2021.
  12. 12. Jain, R., Nagrath, P., Kataria, G., Sirish Kaushik, V., & Jude Hemanth, D. "Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning". Measurement, 165, 108046,2020.
  13. 13. Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., & Mougiakakou, S"Lung pattern classification for interstitial lung diseases using a deep convolutional neural network". IEEE transactions on medical imaging, 35(5), 1207-1216, 2016.
  14. 14. Bicakci, M., Ayyildiz, O., Aydin, Z., Basturk, A., Karacavus, S., & Yilmaz, B. " Metabolic Imaging Based Sub-Classification of Lung Cancer", IEEE Access, 8, 218470-218476,2020.
  15. 15. Guo, L., Gong, H., Wang, Q., Zhang, Q., Tong, H., & Li, J. et al." Detection of multiple lesions of gastrointestinal tract for endoscopy using artificial intelligence model", a pilot study. Surgical Endoscopy, 2020.
  16. 16. Yan C., Yao J., Li R., Xu Z., and Huang J., "Weakly Supervised Deep Learning for Thoracic Disease Classification and Localization on Chest X-rays", Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics -BCB ’18, Washington, DC, USA, 2018.
  17. 17. Chandra TB, Verma K. "Pneumonia detection on chest X-Ray using machine learning paradigm. In: Proceedings of 3rd international conference on computer vision and image processing. Springer Singapore, 21–33, 2019.
  18. 18. Shanto Rahman, Md Mostafijur Rahman, M. Abdullah-Al-Wadud, Golam Dastegir Al-Quaderi and Mohammad Shoyaib" An adaptive gamma correction for image enhancement", EURASIP Journal on Image and Video Processing, Processing, 2016.
  19. 19. Keigo Furutani , Yasushi Hirano , Shoji Kido," Segmentation of lung region from chest X-ray images using U-net", onference-proceedings-of-spie ,2021.
  20. 20. Setianingrum A. H., Rini A. S., and Hakiem N., "Image Segmentation using the Otsu Method in Dental X-rays", 2017 Second International Conference on Informatics and Computing (ICIC), Jayapura, Indonesia, 2017.
  21. 21. Adel Kermi, Issam Mahmoudi, and Mohamed Tarek Khadir. Deep convolutional neural networks using u-net for automatic brain tumor segmentation in multimodal mri volumes. In International MICCAI Brainlesion Workshop, pages 37–48. Springer, 2018.
  22. 22. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015.
  23. 23. Liu J., Wang G., Duan L.-Y., Abdiyeva K., and Kot A. C., "Skeleton Based Human Action Recognition with Global Context-Aware Attention LSTM Networks", IEEE Transactions on Image Processing, Vol. 27, No. 4, pp: 1586-1599 , 2018.
  24. 24. A. E. Orhan, and X. Pitkow, "Skip connections eliminate singularities", 6th Int. Conf. Learn. Represent. ICLR 2018 - Conf. Track Proc., Las Vegas, NV, USA, 2018.
  25. 25. Wang X., Peng Y., Lu L., Lu Z., Bagheri M., and Summers R. M., "ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases", 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp: 3462-3471, 2017.
  26. 26. Baltruschat I. M., Nickisch H., Grass M., Knopp T., and Saalbach A., "Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification", Scientific Reports Journal, Vol. 9, No. 1, 2019.