Abstract
This study proposes a hybrid analytical–AI modeling framework for predicting the cyclic flexural behavior of reinforced-concrete (RC) beams strengthened with externally bonded Basalt Fiber-Reinforced Polymer (BFRP) sheets. The approach combines a MATLAB-based analytical–numerical solver with an artificial-intelligence surrogate predictor to enable accurate and rapid assessment of strength, ductility, and energy dissipation under repeated loading.
A fiber-section analytical model was formulated to simulate the nonlinear hysteresis response, incorporating concrete degradation, steel kinematic hardening, and bond-controlled BFRP strain limits. Displacement-controlled cyclic simulations were executed to generate a comprehensive dataset spanning BFRP thicknesses (0.5–2.0 mm) and bonded-length ratios (0.3–0.9). A deep-learning surrogate network, trained on 300 analytical simulations, achieved a high predictive accuracy (R² = 0.964, RMSE = 98.4 kN), confirming strong correlation with both analytical and published experimental data.
Parametric results revealed that increasing effective FRP strain up to 0.016–0.018 enhances peak load by ≈ 20 %, while extending the bonded length to Lₐ/L ≈ 0.8 improves ductility and equivalent damping (ξ_eq ≈ 5 %). Beyond these limits, performance gains plateau, defining an optimal retrofit range.
The proposed framework establishes a non-experimental digital-twin pathway for performance-based FRP retrofit design, offering a computationally efficient alternative to finite-element or laboratory testing. The model’s scalability supports future integration into AI-driven code calibration and design-chart development for cyclic and seismic applications.
Keywords
- Basalt-FRP (BFRP)
- cyclic behavior
- reinforced-concrete beams
- analytical–numerical modeling
References
- 1. Naser, M. Z., Hawileh, R. A., & Abdalla, J. (2021). Modeling Strategies of Finite Element Simulation of Reinforced Concrete Beams Strengthened with FRP: A Review. Journal of Composites Science, 5(1), 19. https://doi.org/10.3390/jcs5010019
- 2. Attia, K. M., El‐Refai, A., & Alnahhal, W. (2020). Flexural behavior of basalt fiber‐ reinforced concrete slab strips with BFRP bars: Experimental testing and numerical simulation. Journal of Composites for Construction, 24(2), 04019066. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001002
- 3. Abushanab, A., & Alnahhal, W. (2021). Numerical parametric investigation on the moment redistribution of basalt FRC continuous beams with basalt FRP bars. Composite Structures, 258, 113399. https://doi.org/10.1016/j.compstruct.2021.114618
- 4. Shoaib, S., El-Maadawy, T., El-Hassan, H., & El-Ariss, B. (2024). Numerical analysis of shear critical BFRP-reinforced concrete beams containing basalt fibers. Structures, 60, 1113–1126. https://doi.org/10.1016/j.istruc.2024.106442
- 5. Al-Hamrani, A. H., Wakjira, T. C., Alnahhal, W., & Ebead, U. (2023). Sensitivity analysis and genetic algorithm-based shear capacity model for basalt FRC one-way slabs reinforced with BFRP bars. Composite Structures, 315, 117968.
- https://doi.org/10.1016/j.compstruct.2023.117968
- 6. Hadi, M. N. S., & Sahebjam, M. (2013). Experimental investigation of the behavior of FRP-strengthened RC beams under cyclic loading. Composite Structures, 99, 281–293. https://doi.org/10.1016/j.compstruct.2012.12.027
- 7. Zhang, Z., Wu, G., Wu, Z., & Huang, H. (2010). Cyclic flexural behavior of RC beams externally strengthened with FRP sheets. Engineering Structures, 32(11), 3388–3396. https://doi.org/10.1016/j.engstruct.2010.07.002
- 8. Gholipour, G., & Zhang, C. (2020). Machine learning-based surrogate modeling for seismic performance prediction of RC structures. Automation in Construction, 118, 103264. https://doi.org/10.1016/j.autcon.2020.103264
- 9. Sharifi, S., & Karamloo, M. (2022). AI-enhanced prediction of load–displacement behavior of FRP-strengthened concrete beams using data-driven models. Composite Structures, 300, 116213. https://doi.org/10.1016/j.compstruct.2022.116213
- 10. Alsaif, A., Alnahhal, W., & Ebead, U. (2019). Experimental and analytical investigation of BFRP-strengthened RC beams subjected to monotonic and repeated loading. Construction and Building Materials, 213, 477–488. https://doi.org/10.1016/j.conbuildmat.2019.04.001
- 11. Wu, Z., Wang, W., & Wu, G. (2019). State-of-the-art review on mechanical behavior of basalt fiber reinforced polymer bars. Construction and Building Materials, 228, 116699. https://doi.org/10.1016/j.conbuildmat.2019.116699
- 12. Zhang, C., Teng, J. G., & Yang, S. (2021). Modeling of debonding failure in FRP- strengthened RC beams using a cohesive zone approach. Composite Structures, 266, 113827. https://doi.org/10.1016/j.compstruct.2021.113827
- 13. Huang, Y., Lam, J. Y. K., & Talamona, D. (2015). Cyclic behaviour and hysteretic energy dissipation of RC beams strengthened with CFRP sheets. Engineering Structures, 102, 306–320. https://doi.org/10.1016/j.engstruct.2015.08.020
- 14. Li, A., Wu, Y., & Jin, W. (2014). Seismic performance of RC beams strengthened with FRP under cyclic loading. Composite Structures, 113, 490–500. https://doi.org/10.1016/j.compstruct.2014.02.009
- 15. Ye, X., Jin, Y., & Yang, D. (2021). Deep learning-based surrogate modeling for structural response prediction under seismic actions. Engineering Applications of Artificial Intelligence, 103, 104309. https://doi.org/10.1016/j.engappai.2021.104309
- 16. Barmpalexis, P., & Dritsos, S. (2022). Machine learning for enhanced prediction of FRP strengthening effects on RC beams. Structures, 40, 1574–1588. https://doi.org/10.1016/j.istruc.2022.04.075
- 17. Bisby, L. A., & Ranger, M. E. (2010). Modeling the bond of FRP laminates to concrete slabs under flexural loading. Journal of Composites for Construction, 14(6), 653–662. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000135
- 18. Goulias, D. G., & Bhat, S. (2023). Numerical investigation of RC beams strengthened with externally bonded FRP: Influence of bond imperfections and debonding. Composite Structures, 318, 117935. https://doi.org/10.1016/j.compstruct.2023.117935
- 19. Teng, J. G., Chen, J. F., Smith, S. T., & Lam, L. (2003). FRP-Strengthened RC Structures. Wiley.
- ISBN: 978-0471490328
- 20. Chen, J. F., & Teng, J. G. (2001). Anchorage strength models for FRP plates bonded to concrete. Journal of Structural Engineering, 127(6), 784–791. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(784)
- 21. Birtel, V., & Mark, P. (2006). Parameterized finite element models of RC beams using nonlinear concrete material laws. Finite Elements in Analysis and Design, 42, 680–688. https://doi.org/10.1016/j.finel.2005.12.003
- 22. Lowes, L. N., Altoontash, A., & Mitra, N. (2004). A beam-column joint model for cyclic load response prediction. Journal of Structural Engineering, 130(2), 187–198. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(187)
- 23. Gao, Z., Jiang, T., & Li, L. (2021). Digital twin-driven design and performance prediction for reinforced concrete structures. Automation in Construction, 131, 103900. https://doi.org/10.1016/j.autcon.2021.103900
- 24. Mehrotra, M., & Gopalakrishnan, K. (2023). AI-enabled digital twin framework for predictive structural health diagnostics. Sensors, 23(1), 474.
- https://doi.org/10.3390/s23010474
- 25. Chahkoutahi, F., & Rajabi, A. M. (2023). Artificial intelligence-based prediction of seismic demand parameters for FRP-strengthened RC frames. Engineering Structures, 297, 116742. https://doi.org/10.1016/j.engstruct.2023.116742
- 26. Dai, Y., Xu, S., & Chen, G. (2022). Data-driven modeling for cyclic degradation of reinforced concrete members using machine learning techniques. Engineering Applications of Artificial Intelligence, 113, 104951.
- https://doi.org/10.1016/j.engappai.2022.104951
- 27. Fathipour, R., Mahdizadeh, M., & Shokouhi, S. (2023). Reliability-based machine learning surrogate for nonlinear cyclic response of RC beams. Structures, 51, 1502–1517. https://doi.org/10.1016/j.istruc.2023.07.052
- 28. Mousa, A. E., & Ghabban, M. (2024). Hybrid deep learning and numerical modeling framework for seismic capacity assessment of FRP-retrofitted RC beams. Composite Structures, 327, 117973. https://doi.org/10.1016/j.compstruct.2023.117973
- 29. Al-Kamaki, Y., Al-Hazmi, H., & El-Ariss, B. (2024). Digital twin-based evaluation of FRP-strengthened RC members under cyclic loads. Automation in Construction, 159, 105074. https://doi.org/10.1016/j.autcon.2024.105074
- 30. Chowdhury, R., & Ahmed, M. (2023). Towards digital-twin-assisted structural retrofitting using FRP composites: A conceptual review. Composite Structures, 317, 117924. https://doi.org/10.1016/j.compstruct.2023.117924
- 31. Huang, Z., Liu, P., & Qiu, Q. (2022). Surrogate modeling for cyclic hysteresis in concrete structural elements using physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 393, 114823. https://doi.org/10.1016/j.cma.2022.114823