Abstract
Traditional energy grids are evolving into smart grids (SGs), which incorporate advanced communications, real-time analytics, and two-way power flows due to the global shift in the direction of sustainable energy. Complex problems as a result of this paradigm shift include handling large datasets, integrating intermittent renewable energy resources, and ensuring grid security and reliability. This literature review systematically examines the transformative role of machine learning (ML) and artificial intelligence (AI) in addressing these challenges. In addition to summarizing their use in key domains including demand forecasting, predictive maintenance, resource allocation, and anomaly detection, it also presents a selection of ML algorithms ranging from simple models such as SVM to state-of-the-art deep learning (DRL). The review also examines new hybrid architectures, including AI integration with blockchain to ensure secure transactions and federated learning to ensure data security. Despite significant improvements in efficiency and sustainability, AI adoption faces barriers related to data quality, model scalability, computational complexity, and cybersecurity. The study concludes by identifying critical research gaps and proposing future directions such as the development of explainable AI (XAI), lightweight models, standardized frameworks, and robust policy reforms to realize the full potential of self-adaptive smart energy grids.
Keywords
- Smart Grids
- Distribution Systems
- Renewable Energy Integration
- Machine Learning.
References
- 1. Akbari, E., Faraji Naghibi, A., Veisi, M., Shahparnia, A., & Pirouzi, S. (2024). Multi-objective economic operation of smart distribution network with renewable-flexible virtual power plants considering voltage security index. Scientific Reports, 14(1), 19136. https://doi.org/10.1038/s41598-024-70095-1
- 2. Arefin, J., Aziz, A., & Akhter, S. (2025). AI-Based Energy Forecasting for Smart Grids with Renewable Integration. Journal of Computer Science and Technology Studies, 7(4), 461–480. https://doi.org/10.32996/jcsts.2025.7.4.55
- 3. Aslam, S., Aung, P. P., Rafsanjani, A. S., & Majeed, A. P. P. A. (2025). Machine learning applications in energy systems: Current trends, challenges, and research directions. Energy Informatics, 8(1), 62. https://doi.org/10.1186/s42162-025-00524-6
- 4. Bayindir, R., Hossain, E., Kabalci, E., & Perez, R. (2014). A Comprehensive Study on Microgrid Technology. International Journal Of Renewable Energy Research, 4(4), 1094–1107.
- 5. Dehaghani, M. N., Korõtko, T., & Rosin, A. (2025). AI Applications for Power Quality Issues in Distribution Systems: A Systematic Review. IEEE Access, 13, 18346–18365. https://doi.org/10.1109/ACCESS.2025.3533702
- 6. Esmalifalak, M., Liu, L., Nguyen, N., Zheng, R., & Han, Z. (2017). Detecting Stealthy False Data Injection Using Machine Learning in Smart Grid. IEEE Systems Journal, 11(3), 1644–1652. https://doi.org/10.1109/JSYST.2014.2341597
- 7. Gaikwad, M. B., Malla, S., Hussain, K., Kumar, Y. J. N., & Neelima, K. (2025). Smart Grid Technologies: AI and ML for Enhanced Energy Management. Metallurgical and Materials Engineering, 31(1), 763–771. https://doi.org/10.63278/mme.v31i1.1308
- 8. Hatcher, W. G., & Yu, W. (2018). A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends. IEEE Access, 6, 24411–24432. https://doi.org/10.1109/ACCESS.2018.2830661
- 9. Huang, D., Zhu, C., Zheng, W., Yan, X., Lu, W., & Zhou, B. (2025). AI Prediction of Power Grid Faults Based on Deep Learning and Improvement of Emergency Response Efficiency in Automated Repair. Distributed Generation & Alternative Energy Journal, 63–84. https://doi.org/10.13052/dgaej2156-3306.4013
- 10. Iqbal, S., Sarfraz, M., Ayyub, M., Tariq, M., Chakrabortty, R. K., Ryan, M. J., & Alamri, B. (2021). A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment. Sustainability, 13(13), 7170. https://doi.org/10.3390/su13137170
- 11. Jamil, F., Iqbal, N., Imran, Ahmad, S., & Kim, D. (2021). Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid. IEEE Access, 9, 39193–39217. https://doi.org/10.1109/ACCESS.2021.3060457
- 12. Jiang, H., Li, Y., Zhang, Y., Zhang, J. J., Gao, D. W., Muljadi, E., & Gu, Y. (2017). Big Data-Based Approach to Detect, Locate, and Enhance the Stability of an Unplanned Microgrid Islanding. Journal of Energy Engineering, 143(5), 04017045. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000473
- 13. Katche, M. L., Makokha, A. B., Zachary, S. O., & Adaramola, M. S. (2023). A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems. Energies, 16(5), 2206. https://doi.org/10.3390/en16052206
- 14. Khosravi, N., Dowlatabadi, M., & Sabzevari, K. (2025). A hierarchical deep learning approach to optimizing voltage and frequency control in networked microgrid systems. Applied Energy, 377, 124313. https://doi.org/10.1016/j.apenergy.2024.124313
- 15. Kiasari, M. M., & Aly, H. H. (2024). A proposed controller for real-time management of electrical vehicle battery fleet with MATLAB/SIMULINK. Journal of Energy Storage, 99, 113235. https://doi.org/10.1016/j.est.2024.113235
- 16. Kolivandi, M., Farahani, M. K., & Ghahnavieh, A. R. (2024). Probabilistic Energy Routing Algorithm Enabling Reliability Assessment in Local Energy Internet. 2024 9th International Conference on Technology and Energy Management (ICTEM), 1–6. https://doi.org/10.1109/ICTEM60690.2024.10631934
- 17. Long, W., Chang, X., Xu, M., Gao, D., Guo, J., Du, L., & Wang, K. (2023). Energy Flow Analysis and Optimization of Tahe No.1 Union Station. 2023 8th International Conference on Power and Renewable Energy (ICPRE), 1853–1857. https://doi.org/10.1109/ICPRE59655.2023.10353709
- 18. Lu, Y., Xiang, Y., Huang, Y., Yu, B., Weng, L., & Liu, J. (2023). Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load. Energy, 271, 127087. https://doi.org/10.1016/j.energy.2023.127087
- 19. Manbachi, M., Nasri, M., Shahabi, B., Farhangi, H., Palizban, A., Arzanpour, S., Moallem, M., & Lee, D. C. (2014). Real-Time Adaptive VVO/CVR Topology Using Multi-Agent System and IEC 61850-Based Communication Protocol. IEEE Transactions on Sustainable Energy, 5(2), 587–597. https://doi.org/10.1109/TSTE.2013.2278540
- 20. Mostafa, N., Ramadan, H. S. M., & Elfarouk, O. (2022). Renewable energy management in smart grids by using big data analytics and machine learning. Machine Learning with Applications, 9, 100363. https://doi.org/10.1016/j.mlwa.2022.100363
- 21. Niu, Y., Al Sayed, I. A. M., Ali, A. R., Al_Barazanchi, I., JosephNg, P. S., Jaaz, Z. A., & Gheni, H. M. (2023). Research on fault adaptive fault tolerant control of distributed wind solar hybrid generator. Bulletin of Electrical Engineering and Informatics, 12(2), 1029–1040. https://doi.org/10.11591/eei.v12i2.4242
- 22. Ojadi, J. O., Odionu, C. S., Onukwulu, E. C., & Owulade, O. A. (2024). AI-Enabled Smart Grid Systems for Energy Efficiency and Carbon Footprint Reduction in Urban Energy Networks. International Journal of Multidisciplinary Research and Growth Evaluation., 5(1), 1549–1566. https://doi.org/10.54660/.IJMRGE.2024.5.1.1549-1566
- 23. Ramadh, B. (2022). AI-Driven Smart Grids: Optimizing Energy Distribution for a Low-Carbon Future (SSRN Scholarly Paper No. 5146141). Social Science Research Network. https://doi.org/10.2139/ssrn.5146141
- 24. Sadiq, U., Mallek, F., Rehman, S. U., Asif, R. M., Rehman, A. U., & Hamam, H. (2024). A Machine Learning-based Solution for Monitoring of Converters in Smart Grid Application. International Journal of Advanced Computer Science and Applications, 15(3). https://doi.org/10.14569/IJACSA.2024.01503127
- 25. Shoaei, M., Noorollahi, Y., Hajinezhad, A., & Moosavian, S. F. (2024). A review of the applications of artificial intelligence in renewable energy systems: An approach-based study. Energy Conversion and Management, 306, 118207. https://doi.org/10.1016/j.enconman.2024.118207
- 26. Singh, K., Goyal, S. B., Rajawat, A. S., & Waked, H. N. (2025). A Blockchain-Integrated AI Framework for Enhancing Energy Efficiency and Sustainability in Smart Grids. Procedia Computer Science, 258, 2302–2311. https://doi.org/10.1016/j.procs.2025.04.485
- 27. Tang, X., & Wang, J. (2025). Deep Reinforcement Learning-Based Multi-Objective Optimization for Virtual Power Plants and Smart Grids: Maximizing Renewable Energy Integration and Grid Efficiency. Processes, 13(6), 1809. https://doi.org/10.3390/pr13061809
- 28. Tannahill, B. K., & Jamshidi, M. (2014). System of Systems and Big Data analytics – Bridging the gap. Computers & Electrical Engineering, 40(1), 2–15. https://doi.org/10.1016/j.compeleceng.2013.11.016
- 29. Thopate, K., Gawade, M., Kakade, S., Bahir, S., Kulkarni, M., & Jaiswal, K. N. (2024). Solarsense: Enhancing Energy Efficiency Through Iot-Enabled Solar Tracking. 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 1–5. https://doi.org/10.1109/IATMSI60426.2024.10502915
- 30. Wang, W., Liu, L., Liu, J., & Chen, Z. (2021). Energy management and optimization of vehicle-to-grid systems for wind power integration. CSEE Journal of Power and Energy Systems, 7(1), 172–180. https://doi.org/10.17775/CSEEJPES.2020.01610
- 31. Xu, C., Zhang, P., Luo, N., Zheng, F., & He, W. (2025). Integrating Machine Learning for Anomaly Detection and Pattern Recognition in Smart Grid Power Data. Distributed Generation & Alternative Energy Journal, 595–614. https://doi.org/10.13052/dgaej2156-3306.4037
- 32. Yang, T., Zhao, L., Li, W., & Zomaya, A. Y. (2020). Reinforcement learning in sustainable energy and electric systems: A survey. Annual Reviews in Control, 49, 145–163. https://doi.org/10.1016/j.arcontrol.2020.03.001
- 33. Zhang, D., Han, X., & Deng, C. (2018). Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE Journal of Power and Energy Systems, 4(3), 362–370. https://doi.org/10.17775/CSEEJPES.2018.00520
- 34. Zhou, F., Wen, G., Ma, Y., Geng, H., Huang, R., Pei, L., Yu, W., Chu, L., & Qiu, R. (2022). A Comprehensive Survey for Deep-Learning-Based Abnormality Detection in Smart Grids with Multimodal Image Data. Applied Sciences, 12(11), 5336. https://doi.org/10.3390/app12115336
- 35. Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on big data: Opportunities and challenges. Neurocomputing, 237, 350–361. https://doi.org/10.1016/j.neucom.2017.01.026