Abstract

Traditional energy grids are evolving into smart grids (SGs), which incorporate advanced communications, real-time analytics, and two-way power flows due to the global shift in the direction of sustainable energy.  Complex problems as a result of this paradigm shift include handling large datasets, integrating intermittent renewable energy resources, and ensuring grid security and reliability.  This literature review systematically examines the transformative role of machine learning (ML) and artificial intelligence (AI) in addressing these challenges.  In addition to summarizing their use in key domains including demand forecasting, predictive maintenance, resource allocation, and anomaly detection, it also presents a selection of ML algorithms ranging from simple models such as SVM to state-of-the-art deep learning (DRL). The review also examines new hybrid architectures, including AI integration with blockchain to ensure secure transactions and federated learning to ensure data security. Despite significant improvements in efficiency and sustainability, AI adoption faces barriers related to data quality, model scalability, computational complexity, and cybersecurity. The study concludes by identifying critical research gaps and proposing future directions such as the development of explainable AI (XAI), lightweight models, standardized frameworks, and robust policy reforms to realize the full potential of self-adaptive smart energy grids.

Keywords

  • Smart Grids
  • Distribution Systems
  • Renewable Energy Integration
  • Machine Learning.

References

  1. 1. Akbari, E., Faraji Naghibi, A., Veisi, M., Shahparnia, A., & Pirouzi, S. (2024). Multi-objective economic operation of smart distribution network with renewable-flexible virtual power plants considering voltage security index. Scientific Reports, 14(1), 19136. https://doi.org/10.1038/s41598-024-70095-1
  2. 2. Arefin, J., Aziz, A., & Akhter, S. (2025). AI-Based Energy Forecasting for Smart Grids with Renewable Integration. Journal of Computer Science and Technology Studies, 7(4), 461–480. https://doi.org/10.32996/jcsts.2025.7.4.55
  3. 3. Aslam, S., Aung, P. P., Rafsanjani, A. S., & Majeed, A. P. P. A. (2025). Machine learning applications in energy systems: Current trends, challenges, and research directions. Energy Informatics, 8(1), 62. https://doi.org/10.1186/s42162-025-00524-6
  4. 4. Bayindir, R., Hossain, E., Kabalci, E., & Perez, R. (2014). A Comprehensive Study on Microgrid Technology. International Journal Of Renewable Energy Research, 4(4), 1094–1107.
  5. 5. Dehaghani, M. N., Korõtko, T., & Rosin, A. (2025). AI Applications for Power Quality Issues in Distribution Systems: A Systematic Review. IEEE Access, 13, 18346–18365. https://doi.org/10.1109/ACCESS.2025.3533702
  6. 6. Esmalifalak, M., Liu, L., Nguyen, N., Zheng, R., & Han, Z. (2017). Detecting Stealthy False Data Injection Using Machine Learning in Smart Grid. IEEE Systems Journal, 11(3), 1644–1652. https://doi.org/10.1109/JSYST.2014.2341597
  7. 7. Gaikwad, M. B., Malla, S., Hussain, K., Kumar, Y. J. N., & Neelima, K. (2025). Smart Grid Technologies: AI and ML for Enhanced Energy Management. Metallurgical and Materials Engineering, 31(1), 763–771. https://doi.org/10.63278/mme.v31i1.1308
  8. 8. Hatcher, W. G., & Yu, W. (2018). A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends. IEEE Access, 6, 24411–24432. https://doi.org/10.1109/ACCESS.2018.2830661
  9. 9. Huang, D., Zhu, C., Zheng, W., Yan, X., Lu, W., & Zhou, B. (2025). AI Prediction of Power Grid Faults Based on Deep Learning and Improvement of Emergency Response Efficiency in Automated Repair. Distributed Generation & Alternative Energy Journal, 63–84. https://doi.org/10.13052/dgaej2156-3306.4013
  10. 10. Iqbal, S., Sarfraz, M., Ayyub, M., Tariq, M., Chakrabortty, R. K., Ryan, M. J., & Alamri, B. (2021). A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment. Sustainability, 13(13), 7170. https://doi.org/10.3390/su13137170
  11. 11. Jamil, F., Iqbal, N., Imran, Ahmad, S., & Kim, D. (2021). Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid. IEEE Access, 9, 39193–39217. https://doi.org/10.1109/ACCESS.2021.3060457
  12. 12. Jiang, H., Li, Y., Zhang, Y., Zhang, J. J., Gao, D. W., Muljadi, E., & Gu, Y. (2017). Big Data-Based Approach to Detect, Locate, and Enhance the Stability of an Unplanned Microgrid Islanding. Journal of Energy Engineering, 143(5), 04017045. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000473
  13. 13. Katche, M. L., Makokha, A. B., Zachary, S. O., & Adaramola, M. S. (2023). A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems. Energies, 16(5), 2206. https://doi.org/10.3390/en16052206
  14. 14. Khosravi, N., Dowlatabadi, M., & Sabzevari, K. (2025). A hierarchical deep learning approach to optimizing voltage and frequency control in networked microgrid systems. Applied Energy, 377, 124313. https://doi.org/10.1016/j.apenergy.2024.124313
  15. 15. Kiasari, M. M., & Aly, H. H. (2024). A proposed controller for real-time management of electrical vehicle battery fleet with MATLAB/SIMULINK. Journal of Energy Storage, 99, 113235. https://doi.org/10.1016/j.est.2024.113235
  16. 16. Kolivandi, M., Farahani, M. K., & Ghahnavieh, A. R. (2024). Probabilistic Energy Routing Algorithm Enabling Reliability Assessment in Local Energy Internet. 2024 9th International Conference on Technology and Energy Management (ICTEM), 1–6. https://doi.org/10.1109/ICTEM60690.2024.10631934
  17. 17. Long, W., Chang, X., Xu, M., Gao, D., Guo, J., Du, L., & Wang, K. (2023). Energy Flow Analysis and Optimization of Tahe No.1 Union Station. 2023 8th International Conference on Power and Renewable Energy (ICPRE), 1853–1857. https://doi.org/10.1109/ICPRE59655.2023.10353709
  18. 18. Lu, Y., Xiang, Y., Huang, Y., Yu, B., Weng, L., & Liu, J. (2023). Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load. Energy, 271, 127087. https://doi.org/10.1016/j.energy.2023.127087
  19. 19. Manbachi, M., Nasri, M., Shahabi, B., Farhangi, H., Palizban, A., Arzanpour, S., Moallem, M., & Lee, D. C. (2014). Real-Time Adaptive VVO/CVR Topology Using Multi-Agent System and IEC 61850-Based Communication Protocol. IEEE Transactions on Sustainable Energy, 5(2), 587–597. https://doi.org/10.1109/TSTE.2013.2278540
  20. 20. Mostafa, N., Ramadan, H. S. M., & Elfarouk, O. (2022). Renewable energy management in smart grids by using big data analytics and machine learning. Machine Learning with Applications, 9, 100363. https://doi.org/10.1016/j.mlwa.2022.100363
  21. 21. Niu, Y., Al Sayed, I. A. M., Ali, A. R., Al_Barazanchi, I., JosephNg, P. S., Jaaz, Z. A., & Gheni, H. M. (2023). Research on fault adaptive fault tolerant control of distributed wind solar hybrid generator. Bulletin of Electrical Engineering and Informatics, 12(2), 1029–1040. https://doi.org/10.11591/eei.v12i2.4242
  22. 22. Ojadi, J. O., Odionu, C. S., Onukwulu, E. C., & Owulade, O. A. (2024). AI-Enabled Smart Grid Systems for Energy Efficiency and Carbon Footprint Reduction in Urban Energy Networks. International Journal of Multidisciplinary Research and Growth Evaluation., 5(1), 1549–1566. https://doi.org/10.54660/.IJMRGE.2024.5.1.1549-1566
  23. 23. Ramadh, B. (2022). AI-Driven Smart Grids: Optimizing Energy Distribution for a Low-Carbon Future (SSRN Scholarly Paper No. 5146141). Social Science Research Network. https://doi.org/10.2139/ssrn.5146141
  24. 24. Sadiq, U., Mallek, F., Rehman, S. U., Asif, R. M., Rehman, A. U., & Hamam, H. (2024). A Machine Learning-based Solution for Monitoring of Converters in Smart Grid Application. International Journal of Advanced Computer Science and Applications, 15(3). https://doi.org/10.14569/IJACSA.2024.01503127
  25. 25. Shoaei, M., Noorollahi, Y., Hajinezhad, A., & Moosavian, S. F. (2024). A review of the applications of artificial intelligence in renewable energy systems: An approach-based study. Energy Conversion and Management, 306, 118207. https://doi.org/10.1016/j.enconman.2024.118207
  26. 26. Singh, K., Goyal, S. B., Rajawat, A. S., & Waked, H. N. (2025). A Blockchain-Integrated AI Framework for Enhancing Energy Efficiency and Sustainability in Smart Grids. Procedia Computer Science, 258, 2302–2311. https://doi.org/10.1016/j.procs.2025.04.485
  27. 27. Tang, X., & Wang, J. (2025). Deep Reinforcement Learning-Based Multi-Objective Optimization for Virtual Power Plants and Smart Grids: Maximizing Renewable Energy Integration and Grid Efficiency. Processes, 13(6), 1809. https://doi.org/10.3390/pr13061809
  28. 28. Tannahill, B. K., & Jamshidi, M. (2014). System of Systems and Big Data analytics – Bridging the gap. Computers & Electrical Engineering, 40(1), 2–15. https://doi.org/10.1016/j.compeleceng.2013.11.016
  29. 29. Thopate, K., Gawade, M., Kakade, S., Bahir, S., Kulkarni, M., & Jaiswal, K. N. (2024). Solarsense: Enhancing Energy Efficiency Through Iot-Enabled Solar Tracking. 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 1–5. https://doi.org/10.1109/IATMSI60426.2024.10502915
  30. 30. Wang, W., Liu, L., Liu, J., & Chen, Z. (2021). Energy management and optimization of vehicle-to-grid systems for wind power integration. CSEE Journal of Power and Energy Systems, 7(1), 172–180. https://doi.org/10.17775/CSEEJPES.2020.01610
  31. 31. Xu, C., Zhang, P., Luo, N., Zheng, F., & He, W. (2025). Integrating Machine Learning for Anomaly Detection and Pattern Recognition in Smart Grid Power Data. Distributed Generation & Alternative Energy Journal, 595–614. https://doi.org/10.13052/dgaej2156-3306.4037
  32. 32. Yang, T., Zhao, L., Li, W., & Zomaya, A. Y. (2020). Reinforcement learning in sustainable energy and electric systems: A survey. Annual Reviews in Control, 49, 145–163. https://doi.org/10.1016/j.arcontrol.2020.03.001
  33. 33. Zhang, D., Han, X., & Deng, C. (2018). Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE Journal of Power and Energy Systems, 4(3), 362–370. https://doi.org/10.17775/CSEEJPES.2018.00520
  34. 34. Zhou, F., Wen, G., Ma, Y., Geng, H., Huang, R., Pei, L., Yu, W., Chu, L., & Qiu, R. (2022). A Comprehensive Survey for Deep-Learning-Based Abnormality Detection in Smart Grids with Multimodal Image Data. Applied Sciences, 12(11), 5336. https://doi.org/10.3390/app12115336
  35. 35. Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on big data: Opportunities and challenges. Neurocomputing, 237, 350–361. https://doi.org/10.1016/j.neucom.2017.01.026