Abstract
The limited self-healing capacity of bone and the disadvantages of traditional grafting methods make large bone defects a significant challenge in regenerative medicine. Recent developments in bone tissue engineering (BTE) have highlighted the therapeutic potential of bioelectronic scaffolds as well as piezoelectric biomaterials. As a result of these smart systems, bone regeneration can be actively controlled by responding to external or internal biophysical cues, including electrical and mechanical stimulation. A critical examination of recent in vivo studies using piezoelectric ceramics and polymers is presented in this review that explores the role of endogenous bioelectric signaling in bone healing. Furthermore, this study assesses the interaction between conductive scaffolds, electrical stimulation modalities, and piezo-responsive materials to improve osteogenesis, osseointegration, and vascularization. A particular emphasis is placed on translational implications, scaffold fabrication techniques such as 3D printing, and the integration of remote-controlled stimulation systems for battery-free and self-sufficient stimulation. The insights provided here provide a roadmap for developing next-generation bioelectronic platforms that can overcome current clinical limitations in orthopedic repair
Keywords
- Bone tissue engineering
- electrical stimulation
- bioelectronic scaffolds
- piezoelectric biomaterials
- in vivo regeneration
- smart biomaterials
- osteogenesis.
References
- 1- Allaq, A. A., Kashan, J. S., Mahmood, A. I., & Abdul-Kareem, F. M. (2025). Development and characterization of poly (methyl methacrylate)/hydroxyapatite bio-composites treated with antimicrobial agent as a bone analogue material. Materials and Technology, 59(2), 315-323.
- 1. 2-Fillingham, Y., & Jacobs, J. (2016). Bone grafts and their substitutes. The Bone & Joint Journal, 98-B(1 Suppl A), 6–9. https://doi.org/10.1302/0301-620X.98B1.36350
- 2. 3-Bauer, T. W., & Muschler, G. F. (2000). Bone graft materials: An overview of the basic science. Clinical Orthopaedics and Related Research, 371, 10–27. https://doi.org/10.1097/00003086-200002000-00003
- 3. A. Al-allaq, A., Kashan, J. S., & Abdul-Kareem, F. M. (2024). In vivo investigations of polymers in bone tissue engineering: a review study. International Journal of Polymeric Materials and Polymeric Biomaterials, 73(18), 1664-1684.
- 4. O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X
- 5. Martin, I., Wendt, D., & Heberer, M. (2004). The role of bioreactors in tissue engineering. Trends in Biotechnology, 22(2), 80–86.
- 6. Ribeiro, T. P., Flores, M., Madureira, S., Zanotto, F., Monteiro, F. J., & Laranjeira, M. S. (2023). Magnetic bone tissue engineering: reviewing the effects of magnetic stimulation on bone regeneration and angiogenesis. Pharmaceutics, 15(4), 1045.
- 7. Al-Allaq, A. A., Kashan, J. S., El-Wakad, M. T., & Soliman, A. M. (2021). The Bio-Composites (Hydroxyapatite/High-Density Polyethylene) Materials Rein Forced with Multi-Walled Carbon Nanotubes for Bone Tissue Repair. J. Ceram. Process. Res, 22(4), 446-454.
- 8. Dagdeviren, C., Yang, B. D., & Rogers, J. A. (2020). Recent progress in flexible and stretchable bio-electronic devices integrated with nanomaterials. Advanced Materials, 32(27), 1902549. https://doi.org/10.1002/adma.201902549
- 9. Wang, S., Xu, J., Wang, W., Wang, G., Rastak, R., Molina-Lopez, F., ... & Bao, Z. (2020). Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 589(7840), 33–38.
- 10. Sun, J., Xie, W., Wu, Y., Li, Z., & Li, Y. (2024). Accelerated bone healing via electrical stimulation. Advanced Science, 2404190.
- 11. Samadi, A., Salati, M. A., Safari, A., Jouyandeh, M., Barani, M., Singh Chauhan, N. P., ... & Saeb, M. R. (2022). Comparative review of piezoelectric biomaterials approach for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 33(12), 1555-1594.
- 12. Khatua, C., Bhattacharya, D., & Balla, V. K. (2020). In situ electrical stimulation for enhanced bone growth: a mini‐review. Medical Devices & Sensors, 3(4), e10090.
- 13. Zhang, K., Wang, S., Zhou, C., Cheng, L., Gao, X., Xie, X., ... & Xu, H. H. (2018). Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone research, 6(1), 31.
- 14. Montoya, C., Du, Y., Gianforcaro, A. L., Orrego, S., Yang, M., & Lelkes, P. I. (2021). On the road to smart biomaterials for bone research: Definitions, concepts, advances, and outlook. Bone research, 9(1), 12.
- 15. Al-Allaq, A. A., Kashan, J. S., El-Wakad, M. T., & Soliman, A. M. (2021). evaluation of a hybrid biocomposite of ha/hdpe reinforced with multi-walled carbon nanotubes (Mwcnts) as a bone-substitute material. Materials and Technology, 55(5), 673-680..
- 16. Bai, Y., Li, X., Wu, K., Heng, B. C., Zhang, X., & Deng, X. (2025). Biophysical stimuli for promoting bone repair and regeneration. Medical Review, 5(1), 1-22.
- 17. Heng, B. C., Bai, Y., Li, X., Meng, Y., Lu, Y., Zhang, X., & Deng, X. (2023). The bioelectrical properties of bone tissue. Animal models and experimental medicine, 6(2), 120-130.
- 18. Isaacson, B. M., & Bloebaum, R. D. (2010). Bone bioelectricity: what have we learned in the past 160 years?. Journal of biomedical materials research Part A, 95(4), 1270-1279.
- 19. Ohgaki, M., Kizuki, T., Katsura, M., & Yamashita, K. (2001). Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 57(3), 366-373.
- 20. Dubey, A. K., & Basu, B. (2014). Pulsed electrical stimulation and surface charge induced cell growth on multistage spark plasma sintered hydroxyapatite‐barium titanate piezobiocomposite. Journal of the American Ceramic Society, 97(2), 481-489.
- 21. Aifantis, I. D., Ampadiotaki, M. M., Pallis, D., Tsivelekas, K. K., Papadakis, S. A., Chronopoulos, E., ... & Tsivelekas, K. (2023). Biophysical Enhancement in Fracture Healing: A Review of the Literature. Cureus, 15(4).
- 22. Brighton, C. T., Wang, W., Seldes, R., Zhang, G., & Pollack, S. R. (2001). Signal transduction in electrically stimulated bone cells. JBJS, 83(10), 1514-1523.
- 23. Sundelacruz, S., Li, C., Choi, Y. J., Levin, M., & Kaplan, D. L. (2013). Bioelectric modulation of wound healing in a 3D in vitro model of tissue-engineered bone. Biomaterials, 34(28), 6695-6705.
- 24. Al-allaq, A. A., Kashan, J. S., Abdul-Kareem, F. M., & Alani, A. M. (2025). Review of in vivo investigations on metal implants for bone tissue engineering. Regenerative Engineering and Translational Medicine, 11(1), 132-156.
- 25. Iandolo, D., Ravichandran, A., Liu, X., Wen, F., Chan, J. K., Berggren, M., ... & Simon, D. T. (2016). Development and characterization of organic electronic scaffolds for bone tissue engineering. Advanced healthcare materials, 5(12), 1505-1512.
- 26. Dixon, D. T., & Gomillion, C. T. (2021). Conductive scaffolds for bone tissue engineering: current state and future outlook. Journal of Functional Biomaterials, 13(1), 1.
- 27. Dixon, D. T., Landree, E. N., & Gomillion, C. T. (2024). 3D-Printed demineralized bone matrix-based conductive scaffolds combined with electrical stimulation for bone tissue engineering applications. ACS applied bio materials, 7(7), 4366-4378.
- 28. Ning, C., Zhou, Z., Tan, G., Zhu, Y., & Mao, C. (2018). Electroactive polymers for tissue regeneration: Developments and perspectives. Progress in polymer science, 81, 144-162.
- 29. Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta biomaterialia, 10(6), 2341-2353.
- 30. Shahini, A., Yazdimamaghani, M., Walker, K. J., Eastman, M. A., Hatami-Marbini, H., Smith, B. J., ... & Tayebi, L. (2014). 3D conductive nanocomposite scaffold for bone tissue engineering. International journal of nanomedicine, 167-181.
- 31. Okafor, S. S., Park, J., Liu, T., Goestenkors, A. P., Alvarez, R. M., Semar, B. A., ... & Rutz, A. L. (2025). 3D Printed Bioelectronic Scaffolds with Soft Tissue‐Like Stiffness. Advanced Materials Technologies, 10(10), 2401528.
- 32. Yu, L., Wu, Q., Jin, F., Zhang, Y., Li, M., Javanmardi, N., ... & Wang, T. (2025). Self-sustained Biomimetic Bioelectronic Accelerated Metabolic Reprogramming of Bone Regeneration. Biomaterials, 123572.
- 33. Bose, S., Roy, M., & Bandyopadhyay, A. (2012). Recent advances in bone tissue engineering scaffolds. Trends in biotechnology, 30(10), 546-554.
- 34. Ciombor, D. M., & Aaron, R. K. (2005). The role of electrical stimulation in bone repair. Foot and ankle clinics, 10(4), 579-593.
- 35. Kesani, A. K., Gandhi, A., & Lin, S. S. (2006). Electrical bone stimulation devices in foot and ankle surgery: types of devices, scientific basis, and clinical indications for their use. Foot & ankle international, 27(2), 148-156.
- 36. Dealler, S. F. (1981). Electrical phenomena associated with bones and fractures and the therapeutic use of electricity in fracture healing. Journal of Medical Engineering & Technology, 5(2), 73-79.
- 37. Goldstein, C., Sprague, S., & Petrisor, B. A. (2010). Electrical stimulation for fracture healing: current evidence. Journal of orthopaedic trauma, 24, S62-S65.
- 38. Silva, J. C., Marcelino, P., Meneses, J., Barbosa, F., Moura, C. S., Marques, A. C., ... & Garrudo, F. F. (2024). Synergy between 3D-extruded electroconductive scaffolds and electrical stimulation to improve bone tissue engineering strategies. Journal of Materials Chemistry B, 12(11), 2771-2794.
- 39. Mata, D., Oliveira, F. J., Neto, M. A., Belmonte, M., Bastos, A. C., Lopes, M. A., ... & Silva, R. F. (2015). Smart electroconductive bioactive ceramics to promote in situ electrostimulation of bone. Journal of Materials Chemistry B, 3(9), 1831-1845.
- 40. Mi, J., Xu, J. K., Yao, Z., Yao, H., Li, Y., He, X., ... & Qin, L. (2022). Implantable electrical stimulation at dorsal root ganglions accelerates osteoporotic fracture healing via calcitonin gene‐related peptide. Advanced Science, 9(1), 2103005.
- 41. France, J. C., Norman, T. L., Santrock, R. D., McGrath, B., & Simon, B. J. (2001). The efficacy of direct current stimulation for lumbar intertransverse process fusions in an animal model. Spine, 26(9), 1002-1007.
- 42. Khare, D., Basu, B., & Dubey, A. K. (2020). Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials, 258, 120280.
- 43. Al‐allaq, A. A., & Kashan, J. S. (2023). A review: In vivo studies of bioceramics as bone substitute materials. Nano Select, 4(2), 123-144.
- 44. Pettersen, E., Anderson, J., & Ortiz-Catalan, M. (2022). Electrical stimulation to promote osseointegration of bone anchoring implants: a topical review. Journal of NeuroEngineering and Rehabilitation, 19(1), 31.
- 45. Bins‐Ely, L. M., Cordero, E. B., Souza, J. C., Teughels, W., Benfatti, C. A. M., & Magini, R. S. (2017). In vivo electrical application on titanium implants stimulating bone formation. Journal of periodontal research, 52(3), 479-484.
- 46. Dai, X., Yao, X., Zhang, W., Cui, H., Ren, Y., Deng, J., & Zhang, X. (2022). The osteogenic role of barium titanate/polylactic acid piezoelectric composite membranes as guiding membranes for bone tissue regeneration. International journal of nanomedicine, 17, 4339.
- 47. Jiang, T., Yu, F., Zhou, Y., Li, R., Zheng, M., Jiang, Y., ... & Ouyang, N. (2024). Synergistic effect of ultrasound and reinforced electrical environment by bioinspired periosteum for enhanced osteogenesis via immunomodulation of macrophage polarization through Piezo1. Materials Today Bio, 27, 101147.
- 48. Gimenes, R., Zaghete, M. A., Bertolini, M., Varela, J. A., Coelho, L. O., & Silva Jr, N. F. (2004, July). Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration. In Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD) (Vol. 5385, pp. 539-547). SPIE.
- 49. Wang, W., Junior, J. R. P., Nalesso, P. R. L., Musson, D., Cornish, J., Mendonça, F., ... & Bártolo, P. (2019). Engineered 3D printed poly (ɛ-caprolactone)/graphene scaffolds for bone tissue engineering. Materials Science and Engineering: C, 100, 759-770
- 50. Callegari, B., & Belangero, W. D. (2004). Analysis of the interface formed among the poli (viniilidene) fluoride (piezoelectric and non-piezoelectric) and the bone tissue of rats. Acta Ortopédica Brasileira, 12, 160-166.
- 51. Shimono, T., Matsunaga, S., Fukada, E., Hattori, T., & Shikinami, Y. (1996). The effects of piezoelectric poly-L-lactic acid films in promoting ossification in vivo. In Vivo (Athens, Greece), 10(5), 471-476.
- 52. Liu, H., Shi, Y., Zhu, Y., Wu, P., Deng, Z., Dong, Q., ... & Cai, L. (2023). Bioinspired piezoelectric periosteum to augment bone regeneration via synergistic immunomodulation and osteogenesis. ACS Applied Materials & Interfaces, 15(9), 12273-12293.
- 53. Lopes, H. B., Santos, T. D. S., de Oliveira, F. S., Freitas, G. P., de Almeida, A. L., Gimenes, R., ... & Beloti, M. M. (2014). Poly (vinylidene-trifluoroethylene)/barium titanate composite for in vivo support of bone formation. Journal of biomaterials applications, 29(1), 104-112.
- 54. Das, R., Curry, E. J., Le, T. T., Awale, G., Liu, Y., Li, S., ... & Nguyen, T. D. (2020). Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator. Nano Energy, 76, 105028.
- 55. Helaehil, J. V., Helaehil, L. V., Alves, L. F., Huang, B., Santamaria-Jr, M., Bartolo, P., & Caetano, G. F. (2023). Electrical stimulation therapy and HA/TCP composite scaffolds modulate the Wnt pathways in bone regeneration of critical-sized defects. Bioengineering, 10(1), 75.
- 56. Bozic, K. J., Glazer, P. A., Zurakowski, D., Simon, B. J., Lipson, S. J., & Hayes, W. C. (1999). In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine, 24(20), 2127.
- 57. Jianqing, F., Huipin, Y., & Xingdong, Z. (1997). Promotion of osteogenesis by a piezoelectric biological ceramic. Biomaterials, 18(23), 1531-1534.
- 58. Yu, B., Qiao, Z., Cui, J., Lian, M., Han, Y., Zhang, X., ... & Lin, K. (2021). A host-coupling bio-nanogenerator for electrically stimulated osteogenesis. Biomaterials, 276, 120997.
- 59. Yu, P., Ning, C., Zhang, Y., Tan, G., Lin, Z., Liu, S., ... & Mao, C. (2017). Bone-inspired spatially specific piezoelectricity induces bone regeneration. Theranostics, 7(13), 3387.
- 60. Sun, T. W., Yu, W. L., Zhu, Y. J., Yang, R. L., Shen, Y. Q., Chen, D. Y., ... & Chen, F. (2017). Hydroxyapatite nanowire@ magnesium silicate core–shell hierarchical nanocomposite: Synthesis and application in bone regeneration. ACS Applied Materials & Interfaces, 9(19), 16435-16447.
- 61. Li, G., Li, Z., Min, Y., Chen, S., Han, R., & Zhao, Z. (2023). 3D‐printed piezoelectric scaffolds with shape memory polymer for bone regeneration. Small, 19(40), 2302927.